Code No:841AA

Time: 3hrs

R17

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA I Semester Examinations, April/May - 2019 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Max.Marks:75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

 5×5 Marks = 25

- 1.a) Construct the truth table $(P \land Q) \lor (Q \land R) \lor (P \land \sim R)$. [5]
 - b) Let G be the set of real numbers not equal to-1 and be defined by a*b=a+b+ab. Prove that < G, *> is an abelian group. [5]
 - c) How many integers between 1 and 100 have a sum of digits of integer numbers equal to 10?
 - d) Find the particular solution for the following difference equation $a_n+5a_{n-1}+6a_{n-2}=42.4^n$
 - e) What do you mean by Isomorphic graph? When will you say that two graphs are isomorphic? [5]

PART -B

 $5 \times 10 \text{ Marks} = 50$

2. Obtain the Principal Disjunctive normal form of

 $P \rightarrow [(P \rightarrow Q) \land \sim (\sim Q \lor \sim P)]$

[10]

- 3. Show that the following *argument is valid*. If today is Tuesday, I have a test in Mathematics or Economics. If my Economics professor is sick, I will not have a test in Economics. Today is Tuesday and my Economics professor is sick. Therefore I have a test in Mathematics.

 [10]
- 4. Consider the group $G = \{1,2,4,7,8,11,13,14\}$ under multiplication modulo 15. Construct the multiplication table of G and verify whether G is cycle or not. [10]

OR

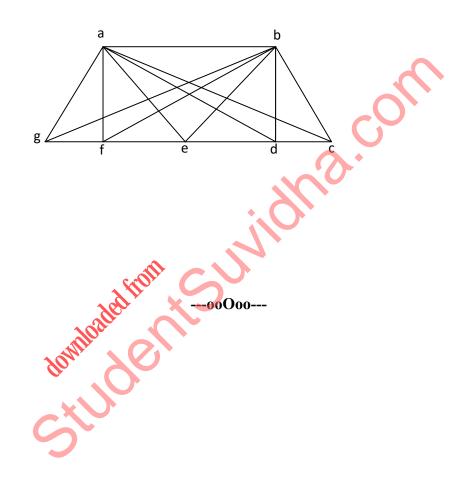
- 5.a) Let f: $R \rightarrow R$ and g: $R \rightarrow R$, where R is the set of real numbers. Find fog and gof, where $f(x) = x^2-2$ and g(x) = x+4. State whether these functions are injective, surjective, and bijective.
 - b) Define Lattice and write various properties of Lattice.

[5+5]

6. Using binomial identities evaluate the sum1.2.3+2.3.4+.....+(n-2)(n-1)n. [10]

OF

- 7. Suppose there are 15 red balls and 5 white balls. Assume that the balls are distinguishable and that a sample of 5 balls is to be selected.
 - a) How many samples of 5 balls are there?
 - b) How many samples contain all red balls?
 - c) How many samples contain 3 red balls and 2 white balls?
 - d) How many samples contain at least 4 red balls?


[10]

8.	Solve the recurrence relation a_n - $7a_{n-1}$ + $10a_{n-2}$ =0 for $n \ge 2$ where a_0 = 10 and a_1 = 41 .	[10]
	OD	

- 9. Explain and illustrate various ways of solving the recurrence relation. [10]
- 10. State and explain the 4-color problem for planar graphs. [10]

OR

11. What is planar graph? Show that following graph is planar. [10]

